География - лучший географический портал. Сайты, учебные материалы по географии.

Модель магмообразования под Курильской островной дугой

Страница 2

Рассмотрим вероятность этих процессов для Курильской ОД, исходя из температурной модели [60]. На рис.7б показано положение кривых устойчивости водосодержащих минералов при данной структуре температур. Отчетливо видно, что большинство водосодержащих минералов (амфибол в базальте, амфибол в перидотите, 7-клинохлор, 14-клинохлор в ассоциации с мусковитом, тремолит) дегидратируются непосредственно под фронтальной вулканической зоной. Кривые устойчивости серпентина и талька в ассоциации с форстеритом пересекают слой 3В океанической коры (серпентизированный перидотит), где возможно нахождение этих минералов, непосредственно под тыловой зоной. На участке субдуцируемой океанической коры между фронтальной и тыловой вулканическими зонами, т.е. под зоной ослабления вулканической активности, нет отчетливых источников воды: 7-клинохлор пересекает этот участок по слою 3В (см. Рис. 7б), где этот минерал практически отсутствует.

Рис. 8

Таким образом, два участка дегидратации водосодержащих минералов располагаются непосредственно под фронтальной и тыловой вулканическими зонами Курильской ОД. Модель магмообразования, основанная на рассмотренных выше данных, показана на рис.8. Отделяющаяся от субдуцированной океанической коры вода мигрирует вверх и, попадая в область более высоких температур в пределах мантийного клина, является причиной плавления. Наряду с этим не исключается и сценарий, по которому вода, отделяющаяся от поддвигаемой плиты в преддуговой области, гидратирует основание мантийного клина, увлекаемое вниз субдуцируемой плитой (наведенная конвекция). Последующая дегидратация амфибола, талька в ассоциации с форстеритом и других водосодержащих минералов из основания мантийного клина может быть дополнительным источником воды под фронтальной зоной.

Для других островных дуг при более горячей или при более холодной зонах субдукции принципиальная картина отделения Н2О от поддвигаемой плиты и, соответственно, сценарий магмообразования не изменится. Однако, сдвиг системы геотерм океанической коры и подошвы мантийного клина влево - при холодной и вправо - при горячей зоне субдукции приведет к изменению местоположения вулканического фронта, а также фронтальной и тыловой зон, как например, в Марианской ОД, где нет деления на фронтальную и тыловую зоны [2].

Принципиально важной для магмообразования представляется оценка количества летучих, которые могут принять участие в магмообразовании, в сравнении с их количеством в островодужных магмах. Результаты проведенных нами [2] расчетов по методике Пикока [77] с учетом геодинамических параметров показали, что в зоне субдукции Курильской островной дуги высвобождается воды ~ в 10 раз больше, а СО2 ~ в 50 раз больше, чем содержится в островодужных магмах. Основным поставщиком Н2О в область магмообразования фронтальной зоны являются слои 1-3А океанической коры, а тыловой зоны - слой 3В (серпентизированный перидотит). Количество воды, выделяющееся при дегидратации слоя 3В, в 2 раза больше, чем при дегидратации остальных слоев океанической коры.

Все вулканы Курило-Камчатской островодужной системы извергают в среднем 0,09 км3/год или 43,5 км3 на 1 км длины дуги в 1 млн. лет. Это немного больше, чем в среднем для островных дуг. Для излияния на поверхность такого объема лав требуется не менее 220 км3 расплава на 1 км длины дуги в 1 млн. лет. Если исходить из модели плавления океанической коры верхней части поддвигаемой плиты [58,71,72], то для образования такого количества магмы при скорости поддвига 9 см/год требуется полностью расплавить слой мощностью 2 км, а при 20% степени плавления потребуется слой мощностью 10 км, что более, чем в два раза превысит мощность океанической коры. Это является дополнительным свидетельством невозможности плавления верхней части поддвигаемой плиты, хотя и не искючает полностью вероятность такого плавления и привноса небольшой части расплава в мантийный клин. Проведенный нами количественный подсчет объема мантийных выплавок [2] показывает, что плавление мантийного клина обеспечивает требуемый объем магмы без направленного изменения ее химического состава во времени, что характерно практически для всех ОД только в случае конвекции (наведенной субдукцией) в мантийном клине.

Страницы: 1 2 3

Другие публикации

Большой Барьерный риф
На две тысячи триста километров от острова Новая Гвинея до тропика Козерога протянулась вдоль восточного берега Австралии почти непрерывная гряда из трех тысяч рифов и тысячи островов, составляющих вместе удивительное и прекраснейшее творение природы Большой Барьерный ...

Складчатые и разрывные дислокации пластов, особенности их влияния на инженерно-геологические условия
Складчатые и разрывные дислокации пластов, особенности их влияния на инженерно-геологические условия строительных площадок, эксплуатацию зданий и сооружений. Земная кора обладает различной подвижностью. На поверхности Земли постоянно возникают горные системы и океани ...

Разделы

Поиск