География - лучший географический портал. Сайты, учебные материалы по географии.

Критерии достоверности данных гидрогеохимического мониторинга

Страница 2

Правильность методик, характеризующую систематическую ошибку, находят на основании анализа стандартных растворов определяемого компонента в различных интервалах диапазона концентраций. Для элиминирования возможного мешающего влияния неизвестных компонентов состава используется метод так называемого внутреннего стандарта, при котором в часть исследуемой воды вводится точно известное количество анализируемого вещества и проводится параллельное определение в воде и пробе с добавкой.

Сопоставление экспериментально найденной величины сухого остатка воды (высушивание при 105 - 1100 или при 150 - 1800, рациональнее с добавкой навески карбоната натрия) с расчетной величиной суммарной минерализации (уменьшенной на 0,508 НСО3-.) позволяет оценить суммарную ошибку анализа, которая для пресных вод не должна превышать 10 мг/л при минерализации менее 500 мг/л и 2 отн. % при более высоком значении (ГОСТ 18164-72) [1, 9]. Кроме аналитических погрешностей, величину сухого остатка могут увеличивать компоненты, не определяемые при анализе (в основном кремнекислота и нелетучие органические вещества).

Исходя из электронейтральности растворов, правильность выполнения анализа воды можно контролировать по сопоставлению сумм анионов и катионов в эквивалентной форме. Метод применим к полным анализам, при которых натрий и калий определяются раздельно прямыми аналитическими методами. Допустимые расхождения этих сумм составляют при суммарных концентрациях анионов 3-5, 5-15 и >15 мг-экв/л соответственно 5-10, 2-5 и 2 отн. % [9]. Очевидно, что если сумма натрия и калия определяется при полевом анализе по разности между суммой анионов и общей жесткостью воды, применение этого метода контроля теряет смысл. Следует подчеркнуть, что при расчете необходимо учитывать реальные формы миграции компонентов, поскольку от заряда ионов зависят их эквивалентные веса. Существенные ошибки по этой причине могут иметь место в ультрапресных кремнекислых водах, где концентрации гидросиликатного иона сопоставимы с концентрациями других макрокомпонентов состава, в водах, содержащих заметные количества сероводорода (гидросульфидный ион), органического вещества (ионы органических кислот), в ультракислых водах (гидросульфатный ион, ионы водорода, тяжелых металлов и продуктов их гидролиза) [17, 18].

Для сокращенных анализов воды, в которых ионы натрия и калия не определяются, экспериментальную проверку суммы анионов можно найти, пропуская раствор, оставшийся после определения щелочности, через Н-катионит и оттитровывая выделившийся ион водорода, эквивалентный сумме катионов, щелочью.

Частичный контроль анализов воды можно проводить, проверяя соответствие содержания компонентов карбонатного, силикатного, сероводородного и других равновесий значению величины рН, соответствия соотношения форм элементов переменной валентности значению окислительно-восстановительного потенциала.

Анализ банков данных региональных служб мониторинга подземных водозаборов вод питьевого и хозяйственно-бытового назначения позволяет выявить распространенные основные недостатки химико-аналитической информации, значительно снижающие достоверность данных.

В перечне химико-аналитических определений отсутствуют необходимые для контроля правильности результатов анализа экспериментальные определения сухого остатка, прямые определения раздельно натрия и калия, что делает невозможным сопоставление расчетной величины минерализации и сухого остатка, суммы катионов и суммы анионов.

Практически отсутствуют результаты параллельных анализов, что делает невозможным надежную оценку воспроизводимости.

Отсутствует информация о правильности использованных методов анализа по стандартным растворам. В настоящее время для определения многих компонентов рекомендовано несколько различных методик. Поскольку в банках данных по мониторингу как правило нет указаний на примененные методики анализа, нет возможности оценить правильность и по опубликованным данным.

Рассмотрение массива гидрохимической информации позволяет оценить достоверность данных на основании статистической обработки и теории вероятности, принимая во внимание точность использованных методов. Сомнение в достоверности результатов появляется при сопоставлении данных по всему объему информации. Так, например, 25 из 29 данных по содержанию кальция в водах 3-го водозабора г.Воронежа кончаются на 2 десятых, 20 из 21 данных по 4-му водозабору на 1 десятую (при разном числе предшествующих цифр), что невозможно по теории вероятности. Из 54 данных по бору 45 составляют 0,1 мг/л, что не является пределом обнаружения и точности, так как имеются результаты и 0,01, и 0,13. Все значения концентраций молибдена составляют 0,0024 мг/л (без вариаций 2 значащие цифры!). 49 из 56 данных по стронцию - 0,5 мг/л, но изредка встречаются 0,58; 0,7; 0,74; 0 мг/л. В данных по меди и цинку очень многие значения оканчиваются на 9 и более 50 % на 5 (но имеются и такие, как 0,0071). Все значения по никелю, кроме 4-х нулевых, - 0,01 мг/л, все значения концентраций хрома - 0,02 мг/л (кроме 3-х нулевых). Содержания СПАВ содержат 15 подряд значений 0,015 мг/л. Очевидно, что вероятность такого совпадения результатов ничтожна.

Страницы: 1 2 3

Другие публикации

Индокитай
Поверхность полуострова слагается из пяти морфоструктурных зон. Срединными ядрами консолидации древней Индосинии являются лежащие ныне на разной высоте докембрийские платформенные массивы, прикрытые более молодыми отложениями: нагорье Шань (в Верхней Бирме), плато Кор ...

Складчатые тектонические нарушения.
Различают два основных типа складок: антиклинальные (антиклинали), в которых изгиб слоев горных пород обращен выпуклостью вверх, и синклинальные (синклинали), в которых слои изогнуты выпуклостью вниз (см.рис.). Формы этих структур могут быть весьма разнообразны. Они ...

Разделы

Поиск